

RF Heat Load Compensation for the European XFEL

J. Penning

with

M. Clausen, B. Schoeneburg, O. Korth and additional material from J. Eschke, T. Schnautz, M. Omet, J. Branlard

Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

The XFEL: Drilling down to our topic

- Cold compressors: Powerful but sensitive
- Automatic Heat Load Compensation (AHLC)
 - How to compensate
 - How to calculate
 - Limitations of current approach
 - Implementation
 - Robustness issues
 - Summary

XFEL Cryogenic System

EuropeanXFELOverview

XFEL Focusing on the cryo installation

- Injector and 3 Linacs
- 9 Cryo-Strings
- 96 Cryo-Modules
- ~800 Cavities
- 32 cavities per RF station
- Design energy 17.5 GeV

6

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive
- Automatic Heat Load Compensation (AHLC)
 - How to compensate
 - How to calculate
 - Limitations of current approach
 - Implementation
 - Robustness issues
 - Summary

European Cold compressors XFEL General challenges (repeated)

- Cold compressors are turbomachines and hence very sensitive towards massflow-, temperature- and pressurechanges in the 2K-return flow (but the massflow-stability is most important)
- Choke operation: Should be avoided as cryo capacity decreases
- Surge operation: Not possible breakdown of operation

Jörg Penning

Cold compressors

XFEL Cryogenic System

▲ Operational experiences – 2K pressure stability (repeated)

Cold compressors: 2K Pressure stability

- Specified pressure stability: 1% (31 mbar +/- 0.3 mbar)
- Cascaded regulation for pressure adjustment in 2K circuit is used (DESY)
- Automatic heat load compensation (DESY): Changes in the 2K return flow
 - caused by dynamic RF operation are determined automatically and compensation takes place in the linac by automatic heating in the 2K liquid helium

Conclusion:

European

- Cold compressors deliver a pressure stability better than 0.3%, which is much better than internally specified.
- Heat load changes –caused by dyn. RF operation- can be compensated perfectly well by AHLC

XFEL Cryogenic System

XFEL Excursion: Importance of pressure stability

- Cavity Detuning vs. He-Pressure
- Study by Julien Branlard
- Will be presented in September at Linear Accelerator Conference

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive
- Automatic Heat Load Compensation (AHLC)
 - How to compensate
 - How to calculate
 - Limitations of current approach
 - Implementation
 - Robustness issues
 - Summary

XFEL Cryogenic System

XFEL Flowdiagram of Linac 1

XFEL Cryogenic System

12

XFEL Sensors and Actuators

XFEL Controls for the Linac: JT-Valve

- During Cooldown
 - the JT-Valve was controlled by the flow sensor
 - the main concern was stable operation of the coldboxes
- During stable operation
 - the JT-Valve is controlled by the **level sensor**.
 - the main concern now is the level of the He-bath for the cavities and the magnets.

XFEL Controls for the Linac: Heaters

- The Heaters allow for a steady power dissipation which can be *reduced* when the RF is applied to the cavities.
- The Heaters are set to some value which is higher than the expected power introduced by RF.
- Some value is based on experience from the cavity tests and fine tuned by the operators.
- The *reduction* of the Heater power is calculated automatically from RF operational data.

AHLC comes into play

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive

Automatic Heat Load Compensation (AHLC)

- How to compensate
- How to calculate
- Limitations of current approach
- Implementation
- Robustness issues
- Summary

XFEL RF pulse structure

- RF pulses have a certain repetition rate
- Each pulse has a structure
 - Filling until a certain power is reached
 - Stay flat at that power
 - Switch off and let decrease

XFEL Detailed calculation: Filling

- Filling is achieved with a constant voltage, it is clipped when the desired power has been reached.
- The Energy introduced to the cavity is

XFEL Detailed calculation: Flat top

- During the flat top the voltage is kept at the clipped level.
- The dissipated energy is only dependent on the time and the forward power applied.

$$E_{flat} = P_{forw} * t_{flat}$$

XFEL Detailed calculation: Result

$$P_{diss} \sim (E_{fill} + E_{flat} + E_{fall}) * f_{rep} * Usage$$

= K * P_{forw} * (
$$t_{fill}$$
 * 0.38 + t_{flat} + t_{fall}) * f_{rep} * Usage

- K is an empiric factor of about 4 * 10⁻⁷ Pre-calculated from cavity tests Refined after operating experience
- *P_{forw}* is the power as measured by the RF station which is distributed to 32 cavities each.
- *f_{rep}* is the repetition rate
- Usage Only active cavities are taken into account

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive

Automatic Heat Load Compensation (AHLC)

- How to compensate
- How to calculate
- Limitations of current approach
- Implementation
- Robustness issues
- Summary

XFEL AHLC Calculation

22

- Simple approach
 - Linear compensation only
 - Treat all cavities the same

$$P_{diss} = K * P_{forw} * (t_{fill} * 0.38 + t_{flat} + t_{fall}) * f_{rep} * Usage$$

XFEL AHLC Linear Approach

Quality vs. Energy shows non-linear behaviour

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive

Automatic Heat Load Compensation (AHLC)

- How to compensate
- How to calculate
- Limitations of current approach
- Implementation
- Robustness issues
- Summary

XFEL AHLC Putting into operation

- Try the most simple thing first
- Be able to modify the crucial part while maintaining operation
 - AHLC runs outside the process controller of the linac
 - Software updates to AHLC during normal operation of the linac are possible
 - AHLC could be enhanced significantly without overloading the process controller of the linac

XFEL Domain related robustness 1

- Rate-of-change (1W/s) helps survive
 - Intermittent communication breakdowns
 - calculation errors
- Careful selection of manual setpoint for the heaters
 - Keep JT-valves always a bit open
 - Keep heaters always a bit on
 - That ensures a bit of control range always

27

XFEL Domain related robustness 2

What happens when cavities are driven in the non-linear range?

Quenches switch off RF

- AHLC cannot handle this
- Usually happens on announcement from RF group
- Maximum Gradient Task Force tries to push the limits
- One RF station at a time
- Supported by an operator

28

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive

Automatic Heat Load Compensation (AHLC)

- How to compensate
- How to calculate
- Limitations of current approach
- Implementation
- Robustness issues
- Summary

XFEL Cryogenic System

XFEL Architecture of Control System

Make use of two process controllers (IOCs)

XFEL Technical robustness

- What happens if RF data cannot be retrieved?
 - Communication channels announce alarms so operators will notice
 - Current values freeze
- What happens if AHLC-process controller stops or is updated?
 - There will be no more updates via the process border
 - So the current values will be kept in the linacs process controller
 - The operator will be noticed because the AHLCprocess controller failed

32

- The XFEL: Drilling down to our topic
- Cold compressors: Powerful but sensitive

Automatic Heat Load Compensation (AHLC)

- How to compensate
- How to calculate
- Limitations of current approach
- Implementation
- Robustness issues
- Summary

XFEL AHLC in action

From top: RF power, Level, He-Pressure, JT-Valve Readback, Flow, Heater Readback

EuropeanXFELAHLC Next Steps

- If MGTF recommends operation near the non-linear range
 - We will make an approximation
 - The first step might take individual cavities into account
 - We can update AHLC any time

XFEL Summary

- AHLC tries to keep the flow of each cryo string stable
 - It calculates the heat introduced by RF operation from RF live data
 - By reducing the (manually preset) heater power the dissipated heat stays the same
 - Currently only the linear losses can be compensated, near quenching the compensation falls short
 - For ease of implementation all cavities are treated the same
 - The implementation handles communication breakdown and allows for live updates

Thank you for your attention

Additional slides

European XFEL cryo plant Cryo capacity

<u>Croygenic plant-capacity:</u> Performance requirements vs. performance results:

1. Parallel coldbox operation: CB41 and CB43 with cold compressors (CB44)

2. Single coldbox operation: CB41 or CB43 with cold compressors (CB44)

Cooling loop	unit	DESY calculated	DESY s (calcula	pecification ted + safety margin)	Linde offer (guaranteed)	Linde offer (expected)	Test results CB 41 & CB 43	
2K	kW	1.46	1.9		1.9	2.01	> 1.9	
5K – 8K	kW	2.4	3.6		3.6	3.95	4.0	
40K – 80K	kW	16.0	24		24	26.12	25.9	

Conclusion:

Guarantee values for parallel coldbox operation have been exceeded!

XFEL Cryogenic System

First cooldown:

XFEL Linac

European Cold compressors XFEL General challenges

40

Cold compressors: Operational challenges:

- Cold compressors are turbomachines and hence very sensitive towards massflow-, temperature- and pressure- changes in the 2K-return flow (but the massflow-stability is most important)
- <u>Choke operation</u>: Should be avoided as cryo capacity decreases
- Surge operation: Not possible breakdown of operation

Reduced massflow

Bypass operation: Massflow compensation

Conclusion:

CC-bypass operation delivers reasonable reactions on changes in 2K return flow

